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Source: To the Theory on Radiation
Transfer in a Non-Homogeneous |
Mediym ‘

(SO

V.V Zhel—e‘znya.kov

The well-known equation on the radiation transfer in a non
homogeneoﬁs medigm'(l) is derived from the contimuity (conservation)
equation for the density of radiation energy in the space co—ordinates
and in the directions of group velocity. The Oster theory of transfer
in non-homogeneous medium (1) is shown to be inaccurate; it was,
therefore, erroneously appiiéd by Oster and Sofia (2) in their research

on radio emissions of the quiet Sun.

1. The problem 6f radiation transfer plays'a basic part in many
problems of astro-physics and radio-astronomy, thus justifying the
publication of a special article to establish a true transfer equation.
We will demonstrate below the inaccuracy of the radiation transfer
equation in a non-homogeneous medium as establishedjby Oster (1) and
the correctness of the same equation in form (1)} We will then select
an expression for the radiation capacity u| iﬁ'ﬁhe%articles (1’2) and
discuss the results derived when applying Oster radiation'transfer‘}
theory to the problem of plasma radiation, and in particular, to the
problem of radiowaves from the quiet Sun,

It is a well-known fact (see, for instance (354) and (5),
paragraph'26) that the equation of radiation transfer in"a non; “
homogeneous isotropic medium is as followss¥

fzzfl—(l-l—>=a'-—.p/. o : (1)

¥4t this time, as well as below, the spectral values of intensity I,
the radiation capacity a, etc. are being considered, However, in
order to simplify the recording, we disregard, as a rule, in this
case, the index «;in the corresponding values,
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where n is the refraction index, (-the radiation intensity in relation
to the single solid angle a is thé ra*d’ia'l:ion_capacity of the unit
volume, p[the absorption coefficient, dlf the eiement of ray length,
This ‘equatio£:i§ correct in an area where the geometrical optics have
é regular approximation and is recorded for a stationary case when)
does not depend upon the time t.

The equation (1) whiéh determines the balance of radiation
energy along the ray ié usually obtained -in the following manner, If
the transparent(s =0)and the non—radiating(a{=10)fmedium is non-homogeneous,
the radiation intensity, aﬁlong the ray changes proportionally to n? dﬁe
to refraction. In other words,

,-ll—2=const, %(é)———o | @

or,

dl 2/ dn ‘ \

" wal ' (3)-1

which is the same,

(see, for instance, (3) and (5), para 26). The effect of absorption
(» + 0)|and radiation(a + 0)in the medium will reveal itself in the
additional change in intensity along the ray; this change corresponds
to 'a—p//per one unit of the ray length. By adding the last value to

. the change //by means of refraction (3) we obtain the relation

L -
@L:_Qi.g_’_l__*_a_Ll H
Al n dl o ?
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which coincides with the equation on radiation transfer in a non~homogeneous
isotropic medium (1)%*.

These coﬁsiaerations seem to be sufficiently convincing. Yet
doubts as to the accuracy of equation (1) were expressed in the references
(152) as well as in the article (3).

" In the article (1) Oster suggested a different equation for
the radiation’transfer iﬁ é non-homogeneous medium, which is presented

below?z .
UV =g —of. @

[

where o, is the photon group velocity, f - the number of photons in a

(%nit-ef volume and solid angle, q - the rumber of emitted photons per

volume unit and in a unit of time and solid aﬁgle, o when multiplied

by f, is a factor characterising the mumber of absorbed photons. By

miltiplying both components of the equation kA) by the photon energy
we ré&uce (4) tos

VgV = @ — i, . @

where the photon density f is now substituted by the usual macroscopic
value of the radiation energy density in a single solid angle‘zz=;nqﬁ[

Tnasmich as the ray direction coincides with the group wvelocity

#) generalization of the radiation transfer equation in case of a non-
homogeneous anisotropic medium is presented in (5), para 263

(21 cos 8 Nd(;| cos 8 |fnd)idi=a; — wil;. |

Here the § is the angle between the wave vectof‘kj and the group

velocity dw/dk; the index j shows that the corresponding value relates
to a wave of one type (regular or irregular),
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direction, the equations (4), (5) may be presented as:

~ o,

af _
'Urp dl - q - afl N (43)
v du e d—
rp 4l = ou, ) (58)

In connection with Oster.equations the following could be
said. Eqﬁation (4) for photons in a medium has been written by Oster
by analogy with the kinetic equation for particles in the absence of

forces:

9f - | ‘
ot TV =G - ®

where f is the particle distribution function, G - the component which
takes into account the ®birth® and the ®"disappearance® of particles.
In a stationary case fMW;@‘ mdmwﬂMg G=gq —of ! this
équation is transmted into (4). / |

The desire to compoéeva radiation transfer equation by the
same method as the kinetic equation for particles is quite justified.
Actually, the kinetic equation composed as

g’;- + ;UVrf,’Jf‘—,}:?VVf =G )

(where F - is the force, acting on the particle by the mass m), is a
result of the continuity equation (conservation equation) of ﬁarticles

density in a phase space of co-ordinates r and velocities v¥*:

) : L :
L) +velof) = G ®

*Periods here mark total derivatives in time t.
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and the particle motion equations:

F=v  ©=Fr)mn 9),

An analogous correlation to (8) exists for the energy radiation density
‘ul  when relating to a singie‘solid angle, However, during the process
of deriving the transfer equation from the cohtinuity equation (conservation
equation) we arrive at the relation (12a) which does not coincide with
the Oster equation (5); yet the tranéfer‘equation (1) can be derived
from this relation - which we will readily demonstrate.
2. Tus, we first derive the equation of radiation transfer in a
non—homogéneous medium from the contimuity equation for radiation
density u.!

First, it should be taken into account that the derivative r
which now‘represents the transfer velocity of the radiatjon energy
coincides with the group velocity ”m:”ﬂﬂdk/ (k is the wave

vector). The absolute value of the group velocity

qe
dk

'vrp -

ow
~

0 [(,?_(_“.’El]" . (10)

is uhabiguously connected with the value of the radius-vector r (through
the refraction index 7=n(o, r)).] ~ The energy density 4| is therefore
(to the contrary of function f (r, v, t) for particles) only a function

of the time, the radius-vector r and the direction of the group velocity {:,

“u=u(r 1, £ , (11)
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( ¢ is a single vector directed on a tangent to the ray, in pther
words, along the group vélocity: Vrp = 1) -1t becomes clear
now that the phase Space of the ‘radiation will be 7, 7,| unlike the
case of the 7, ¥;l of the material particles; acfordingly, the

continuity equation for radiation density in space r, I ‘ will be

recorded in the following manner: ¥

ou ' . ,
i + ve(vptt) + ve(lu) = G =a — ou ' . (12)
(V:(l"u) | sténds for a two-dimensional divergence on a single vector !/).|

The second equation (9) is, evidently, not applicable to radiation;
it should be substitutéd by an equation defining the ray configuration

in geometrical optics approximation (See (6), para 65)32

T e Lo — L)), - (13))
p (Vrtt — L(ly,)] (13)'

The relation (12) does not correlate with Oster equation (5). It is

true that when we transcribe the relation (12) as follows:

ot

b OVt + 4y + Villi) = a—cu,r (12a) ¢

.

#By integrating the equation by terms (12) alohg all directions 1

(along all solid angles 49, )and taking into account that (ude = o]
. T ‘4n
are the radiating energy denSitieSJS{’tp“_dQ = S/
-I‘n
8 - is the Pointing vector 5V,(lu)d9=0,| (ﬁ we find, G = O,
4= . : Tl

the Poin’cinér theorem in a non—absorbing mediums

0w/0t+vrs = 0'
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we perceive that in a stationary case : (Oujot = O)! it differs from
(5) in the terms 1y, , i V;(.Iu);‘. On the other hand, it
is not difficult to show that, taking taho consideration (13) and
under conditions of Aufot = 0] the equétion (12) becomes
the well~known radiation transfer equation (1). -

In order to prove the last statement mwe will notice that*

/= v,u; Vpplt = v u = I, - :
| ‘ 14
|l=ﬂ‘il_=c_i_l_lv~ g = uy ' ()
dl at ar ™ ° T Mo /

Taking into account these evident relations, we transcribe (12) in

the form
5_"+V,(z/)+v (gl—l>=a-—;¢.’ (18)
ol ' “\di : o
or 2
Loor dl | dl _—
o s A, — —_— = q —
Ty, Of +1 ”T’Vzw Tl =a—ul - (16) '

When passing over to (16) the equality « = //qum,‘ was taken into
account; the Uyp éepéndsl« only upon r, and does not depend upon t

(in a medium with properties not changing with time); in addition the

fact that V',l = 0,] is taken into considerationwinasmlch as vector 1
(12 |
¥The equality 7= uypw is true only in a weak absorption medium,

The latter serves, together with the requirement of validity of
the geometric—-optical approximation as a condition for the application
of the transfer equation, .
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is an indeﬁendent variable together with r. By substituting the

expression for  di/d/l (13) in VthQQJ we obtaip
a1 L1
V[ dl - n UV’”’) Vll - le {_ﬂ‘(lVrn)} /

Howe%r, Vll #2;\ in addition lv,{—l—(lv,.n)} =0, inasmich as
n

fhe gradient on the singie vector 1 is 6rthogona.l to this vector,

Therefore,

di 2
Ve =, Uven

i

and, consequently, equation (16) passes into

1 or ] 2 dl |
— = A dy = = Iyn + oyl = a— pl
Upp OF Ty o Vet oF dl Ve e
By dividing all terms of the equation by n2 and somewhat transforming
it, we get
1 a/ . I dl 2 ¢ / ) .
— —F I =+ Sy, = oL :
’lZ’Urp ot m%>+dl Vi \nt ) g ‘L né ‘(17)1‘

The relation (17) represents an equation with partial derivatives for
T with independent variables r, 1, te
Let us consider, at present, the changes in relation !/"*

along a définite ray ¢

r=rl);  I=u1, (18)
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where ﬂ is the coordinate along the ray (the length of the ray).
Inasmich as both the r and the 1 change whén 1 changes, the deriéative
of I/n?|  along the ray is

i G7) = v (i) + () = o)+ e () oo

(In passing over the last equality it has been taken into account that
‘_dfﬁﬂ==lﬂi In the right part of the equation (19) vectors r and
1 are independent - they are interconnected over the parameter

(see (18))e The value lvﬂlﬁﬂ)'F(dUdUVA/ﬁf“

presehteé'in this part may be found from equation (17); it equals:

Ca / v o/

. nt an niu. ot
rp "

(QO)J
under conditions that the r and 1 values are computed along the ray

(18). Substituting (20) into (19), we obtain a final

1 a/f

d /7 B
-,2______ —_ —_— Lo . 21
Upp 02 ' dl(u2> @l . , @)}

I

or

which is the same thing.

In a stationary case it coincides with the{wéil?%ggﬁn.transfer
equation (1). We notice that equation (17) was obtained actually in
an analogéué manner by Harris (8). waéve;, he was doubtful of the
accuracy of the equality (19) which gave him grounds for the statement
that equation (17), in the final count, cannot be reduced to equation

(21).
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3e Let us consider the differences in intensity of radiation
which result when the true transfer equation is applied (1) and when
Oster equation (52) is used in a system where particles are in the
équilibrium sta%e fin the sense of their velocity distribution). The
radiating capacity~of such a system a is connected with the abéorpfion
coefficient | of the Kirchoof equation

a=plO, (22)

where I(0) - is the intensity of the equilibrium radiation of this

system. (If the refraction index in this system equals n, then

S
e

where [ is the equilibrium intensity in a vacuum; (See (5), para
26)e Taking into account (22) and (23), the first and the last from

the eqﬁality (14) the equa%ioﬁ (l),”(5é) become

A / o AR
E<;>+P;=P/6°’; )
afl / n? B i
L=l = /O -
dl(vrp J e o = M . @9,

The solution of the transfer equation (24) can be recorded

in the form (para 26, (5)). ]

PN

L Y/6°‘e’d-+ e-‘(-]:\ : . (26) -
nt J o 12 ) 1=t
0
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where the optical density <| is expressed by using the p| integral

(along the ray).

At the same time the expression

T

2
Lomes1p Lean 4 ’(
Yrp Uy

’) . (27)
[N : _

serves as a solution to Osterts equatien (25),

In the homogeneous meﬂlu.m : ‘(fa'rp=Aconst, n* = const), both
expressiohs (26), (27) coincides However, in a non-~homogeneous medium
they yield different results, Thué, for instance, the radiation
intensity transferring from the.absorbing layer into the vacuum equals
according to (26)

0

] = et {/EJO)e:d., . (28)

while (27) in this case becomes:*

t

[ = e gl(gmc—’iz- eds. | 29) |

Urp

The expression (29) differs from the correct equation' (28) by the
presence of the factor ¢n*Un) . in the integrand expression.
In plasma Urp = Cnf’ and the factor  cn?fv,, = n<l;| it

Ve
becomes clear that the values obtained when the Oster equation/ is

*In the transition from (27) to (R9) the wvp=c¢  in the vacuum is
considered to be equalling c.

C
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applied to the plasma radiation problem are too low (at equal values
of 1)

The inaccﬁracy of the solution (29) is clearly seen in the
case of rédiation inside a non—tranSpareﬁt éavity with a temperature
T, If the refraction index is, in the center of this cavity n= 1,
fhenAaccording to thermodynamics, there exists in the cavity an
equilibrium radiation with an intensity of / = /®| regardless of the
type of walls - the values n, T&Q etc (the only requirement being
the non-transparency of the walls,). Thé same result is obtained
from the solution (28)z at a T = const the value [ = IP(1 —e™),
is true for nothrénspareni walls with a 1| the intensity in
the cavity is /=/"., Yet, whén aéplying the Oster equation a
different result.is obtained: at a T = const and a constant value of

cn?|Usg| in the walls* the value I = IP(en?[v,)(1 — e);,
if the walls are non-transparent (x> ﬂ,‘ then contrary to
thermodynamics, the intensity in the cavity** [ = IMcn*lv,,) ¥=)?{

In addition to an incorrect equation for transfer, the
articles (1,2) also use an erronecus expressiop for the absorption

coefficient | which determines the optical deémsity *~ = ;'dﬁ

%The transfer equation (1) and its solution (28) are recorded under
.conditions that the radiation reflection from.sharp borders is not
present. Therefore, in the example analyzed, the value ¢#Urp|
mist be constant only in those layers where the absorption coefficient
is ##0 To achieve an absence of reflections it is necessary to
have these layers separated by a smoothly-non-homogeneous medium
from the center of the cavity.

¥#The fact that Oster transfer equation disagrees with thermodynamics
was mentioned in Cronyn's article at an earlier date.
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Oster contends that the radiation capacity of the system a==ﬁ*4
does not depend upon the presence of the medium, in other words, upon
the refraction index n. In accordance with the Kirchobf,law ﬁ1== pl @]
t thereby follows that - p~a-?!  (providing the equilibrium - -
intensity is [Ocony see paragfaph 26 (5))e In other words,

the absorption coefficient in the medium is
b= o | @)

where HA is the absorption coefficient of the system of radiating
particles in a vacuum. According to Oster, the, it is sufficient to
know the absorption coefficient in a vacuum to be able to determine
the absorption coefficient in a medium;

Yet, it is a well known fact that &he presence of a medium
with a refraction index 7+ 1| substantially changes the character of
radiation of individual elemental centers (charged particles, atoms,
molecules). Thus, the bremstrahlung intensity of one electron is
probortioﬁal to n (in the dipole approximation); at sufficiently
large n values of electrons moving at a v velocity, the Vavilov-
Cherenkov radiation is generated'which is absent in a vacuum, etc,

It is clear that the radiation characteristics of a system of such
barticles change considerably depending upon the presence or the
absence of a medium, and, in each case, this change will be different,

For example, we will analyse the breamstrahlung in the
connectioﬁ with plasma absorption. The radiationcapaéity is a
proportionate to n (as in the case of an individual electron; see

above); the value
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p:F‘(f_)m,w, S (31>!

while according to Oster it is pooo n2 The accuracy of the expression
(31) is proven also by the expression for the absorption coefficient
éf électromagnetic waves in isotropic plasma derived from the elementary

theory (See para 7, (7)):

ol
2reNvony (32)
mw(wz—{-vgm))n

Equation (32) characterizes the absorption connected with the
bremstrahiuné by the system of N electrons which undergo collisions
with ions with a frequency Yao: | 1t 1s also inversely proportional
to n. (In (32) e is the electron charge).

~.Ift>foJ'_lows from the above that the transfer equation in a
non-homogeneous medium introduced by Oster and his method of computing
the absorption coefficient in a medium by means of the value of the
absorption coefficient at »=1 are incorredt. For these reasons
the results of the extensive computations of radio-luminosity on the
disk of the "quiet" Sun performed by Oster and Sofia in article (2)
are incorrec£ for %wé reasons, First, the corona and the chromoéphere
are non-homogeneous; as explaineé above, in such cases, the use of
the transfer equation in the form (5), (52), results in substantial
errors, by underestimating the valﬁe‘ofmthé radio emission intensity.
By comparing equations (28), (29) it is easy to notice that in

aifferent points of the—diék %heée errors will vary; therefore, not
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only the absolute value of intensity, but the character of distribution
of radio luminosity on the disk will differ from the true values.

In the second place, a computation of the absorption coefficient of
fhe optical density of the sun corona and chromosphere by means of a
Miniversal®™ relation between the absorption coefficients in the medium

and in a vacuum (30) also leads to incorrect results,
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